In addition to the standard Python Handler, Cortex also supports another handler called the TensorFlow handler, which can be used to run TensorFlow models exported as SavedModel models.
Interface
Uses TensorFlow version 2.3.0 by default
classHandler:def__init__(self,tensorflow_client,config,job_spec):"""(Required) Called once during each worker initialization. Performs setup such as downloading/initializing the model or downloading a vocabulary. Args: tensorflow_client (required): TensorFlow client which is used to make predictions. This should be saved for use in handle_batch(). config (required): Dictionary passed from API configuration (if specified) merged with configuration passed in with Job Submission API. If there are conflicting keys, values in configuration specified in Job submission takes precedence. job_spec (optional): Dictionary containing the following fields: "job_id": A unique ID for this job "api_name": The name of this batch API "config": The config that was provided in the job submission "workers": The number of workers for this job "total_batch_count": The total number of batches in this job "start_time": The time that this job started """ self.client = tensorflow_client# Additional initialization may be done heredefhandle_batch(self,payload,batch_id):"""(Required) Called once per batch. Preprocesses the batch payload (if necessary), runs inference (e.g. by calling self.client.predict(model_input)), postprocesses the inference output (if necessary), and writes the predictions to storage (i.e. S3 or a database, if desired). Args: payload (required): a batch (i.e. a list of one or more samples). batch_id (optional): uuid assigned to this batch. Returns: Nothing """passdefon_job_complete(self):"""(Optional) Called once after all batches in the job have been processed. Performs post job completion tasks such as aggregating results, executing web hooks, or triggering other jobs. """pass
Cortex provides a tensorflow_client to your Handler class' constructor. tensorflow_client is an instance of TensorFlowClient that manages a connection to a TensorFlow Serving container to make predictions using your model. It should be saved as an instance variable in your Handler class, and your handle_batch() function should call tensorflow_client.predict() to make an inference with your exported TensorFlow model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your handle_batch() function as well.
When multiple models are defined using the Handler's models field, the tensorflow_client.predict() method expects a second argument model_name which must hold the name of the model that you want to use for inference (for example: self.client.predict(payload, "text-generator")). There is also an optional third argument to specify the model version.
If you need to share files between your handler implementation and the TensorFlow Serving container, you can create a new directory within /mnt (e.g. /mnt/user) and write files to it. The entire /mnt directory is shared between containers, but do not write to any of the directories in /mnt that already exist (they are used internally by Cortex).
predict method
Inference is performed by using the predict method of the tensorflow_client that's passed to the handler's constructor:
defpredict(model_input,model_name,model_version) ->dict:""" Run prediction. Args: model_input: Input to the model. model_name (optional): Name of the model to retrieve (when multiple models are deployed in an API). When handler.models.paths is specified, model_name should be the name of one of the models listed in the API config.
When handler.models.dir is specified, model_name should be the name of a top-level directory in the models dir.
model_version (string, optional): Version of the model to retrieve. Can be omitted or set to "latest" to select the highest version.
Returns: dict: TensorFlow Serving response converted to a dictionary. """
Specifying models
Whenever a model path is specified in an API configuration file, it should be a path to an S3 prefix which contains your exported model. Directories may include a single model, or multiple folders each with a single model (note that a "single model" need not be a single file; there can be multiple files for a single model). When multiple folders are used, the folder names must be integer values, and will be interpreted as the model version. Model versions can be any integer, but are typically integer timestamps. It is always assumed that the highest version number is the latest version of your model.
API spec
Single model
The most common pattern is to serve a single model per API. The path to the model is specified in the path field in the handler.models configuration. For example:
It is possible to serve multiple models from a single API. The paths to the models are specified in the api configuration, either via the models.paths or models.dir field in the handler configuration. For example:
s3://my-bucket/models/text-generator/
├── 1523423423/ (version number, usually a timestamp)
| └── saved_model.pb
└── 2434389194/ (version number, usually a timestamp)
└── saved_model.pb