Handler
Batch APIs run distributed and fault-tolerant batch processing jobs on-demand. They can be used for batch inference or data processing workloads. It can also be used for running ML models using a variety of frameworks such as: PyTorch, ONNX, scikit-learn, XGBoost, TensorFlow (if not using SavedModels), etc.
If you plan on deploying models with TensorFlow in SavedModel format and run inferences in batches, you can also use the TensorFlow Handler that was specifically built for this purpose.
Project files
Cortex makes all files in the project directory (i.e. the directory which contains cortex.yaml) available for use in your Handler class implementation. Python bytecode files (*.pyc, *.pyo, *.pyd), files or folders that start with ., and the api configuration file (e.g. cortex.yaml) are excluded.
The following files can also be added at the root of the project's directory:
.cortexignorefile, which follows the same syntax and behavior as a .gitignore file. This may be necessary if you are reaching the size limit for your project directory (32mb)..envfile, which exports environment variables that can be used in the handler class. Each line of this file must follow theVARIABLE=valueformat.
For example, if your directory looks like this:
./my-classifier/
├── cortex.yaml
├── values.json
├── handler.py
├── ...
└── requirements.txtYou can access values.json in your Handler class like this:
# handler.py
import json
class Handler:
def __init__(self, config):
with open('values.json', 'r') as values_file:
values = json.load(values_file)
self.values = valuesInterface
Structured logging
You can use Cortex's logger in your handler implemention to log in JSON. This will enrich your logs with Cortex's metadata, and you can add custom metadata to the logs by adding key value pairs to the extra key when using the logger. For example:
The dictionary passed in via the extra will be flattened by one level. e.g.
To avoid overriding essential Cortex metadata, please refrain from specifying the following extra keys: asctime, levelname, message, labels, and process. Log lines greater than 5 MB in size will be ignored.
Cortex Python client
A default Cortex Python client environment has been configured for your API. This can be used for deploying/deleting/updating or submitting jobs to your running cluster based on the execution flow of your batch handler. For example:
Last updated