Configuration
PythonPredictor
PythonPredictor
Specifying models in API configuration
cortex.yaml
cortex.yaml
The directory s3://cortex-examples/sklearn/mpg-estimator/linreg/
contains 4 different versions of the model.
- name: mpg-estimator
kind: RealtimeAPI
predictor:
type: python
path: predictor.py
models:
path: s3://cortex-examples/sklearn/mpg-estimator/linreg/
predictor.py
predictor.py
import mlflow.sklearn
class PythonPredictor:
def __init__(self, config, python_client):
self.client = python_client
def load_model(self, model_path):
return mlflow.sklearn.load_model(model_path)
def predict(self, payload, query_params):
model_version = query_params.get("version")
# model_input = ...
model = self.client.get_model(model_version=model_version)
result = model.predict(model_input)
return {"prediction": result, "model": {"version": model_version}}
Without specifying models in API configuration
cortex.yaml
cortex.yaml
- name: text-analyzer
kind: RealtimeAPI
predictor:
type: python
path: predictor.py
...
predictor.py
predictor.py
class PythonPredictor:
def __init__(self, config):
self.analyzer = initialize_model("sentiment-analysis")
self.summarizer = initialize_model("summarization")
def predict(self, query_params, payload):
model_name = query_params.get("model")
model_input = payload["text"]
# ...
if model_name == "analyzer":
results = self.analyzer(model_input)
predicted_label = postprocess(results)
return {"label": predicted_label}
elif model_name == "summarizer":
results = self.summarizer(model_input)
predicted_label = postprocess(results)
return {"label": predicted_label}
else:
return JSONResponse({"error": f"unknown model: {model_name}"}, status_code=400)
TensorFlowPredictor
TensorFlowPredictor
cortex.yaml
cortex.yaml
- name: multi-model-classifier
kind: RealtimeAPI
predictor:
type: tensorflow
path: predictor.py
models:
paths:
- name: inception
path: s3://cortex-examples/tensorflow/image-classifier/inception/
- name: iris
path: s3://cortex-examples/tensorflow/iris-classifier/nn/
- name: resnet50
path: s3://cortex-examples/tensorflow/resnet50/
...
predictor.py
predictor.py
class TensorFlowPredictor:
def __init__(self, tensorflow_client, config):
self.client = tensorflow_client
def predict(self, payload, query_params):
model_name = query_params["model"]
model_input = preprocess(payload["url"])
results = self.client.predict(model_input, model_name)
predicted_label = postprocess(results)
return {"label": predicted_label}
Last updated