LogoLogo
WebsiteSlack
0.33
0.33
  • Get started
  • Clusters
    • Management
      • Auth
      • Create
      • Update
      • Delete
      • Environments
    • Instances
      • Multi-instance
      • Spot instances
    • Observability
      • Logging
      • Metrics
    • Networking
      • Load balancers
      • VPC peering
      • HTTPS
      • Custom domain
    • Advanced
      • Setting up kubectl
      • Private Docker registry
  • Workloads
    • Realtime APIs
      • Example
      • Predictor
      • Configuration
      • Models
      • Parallelism
      • Server-side batching
      • Autoscaling
      • Statuses
      • Metrics
      • Multi-model
        • Example
        • Configuration
        • Caching
      • Traffic Splitter
        • Example
        • Configuration
      • Troubleshooting
    • Async APIs
      • Example
      • Predictor
      • Configuration
      • Statuses
      • Webhooks
      • Metrics
    • Batch APIs
      • Example
      • Predictor
      • Configuration
      • Jobs
      • Statuses
      • Metrics
    • Task APIs
      • Example
      • Definition
      • Configuration
      • Jobs
      • Statuses
      • Metrics
    • Dependencies
      • Example
      • Python packages
      • System packages
      • Custom images
  • Clients
    • Install
    • Uninstall
    • CLI commands
    • Python client
Powered by GitBook
On this page
  • PythonPredictor
  • Specifying models in API configuration
  • Without specifying models in API configuration
  • TensorFlowPredictor
  • cortex.yaml
  • predictor.py
  1. Workloads
  2. Realtime APIs
  3. Multi-model

Configuration

PythonPredictor

Specifying models in API configuration

cortex.yaml

The directory s3://cortex-examples/sklearn/mpg-estimator/linreg/ contains 4 different versions of the model.

- name: mpg-estimator
  kind: RealtimeAPI
  predictor:
    type: python
    path: predictor.py
    models:
      path: s3://cortex-examples/sklearn/mpg-estimator/linreg/

predictor.py

import mlflow.sklearn


class PythonPredictor:
    def __init__(self, config, python_client):
        self.client = python_client

    def load_model(self, model_path):
        return mlflow.sklearn.load_model(model_path)

    def predict(self, payload, query_params):
        model_version = query_params.get("version")

        # model_input = ...

        model = self.client.get_model(model_version=model_version)
        result = model.predict(model_input)

        return {"prediction": result, "model": {"version": model_version}}

Without specifying models in API configuration

cortex.yaml

- name: text-analyzer
  kind: RealtimeAPI
  predictor:
    type: python
    path: predictor.py
    ...

predictor.py

class PythonPredictor:
    def __init__(self, config):
        self.analyzer = initialize_model("sentiment-analysis")
        self.summarizer = initialize_model("summarization")

    def predict(self, query_params, payload):
        model_name = query_params.get("model")
        model_input = payload["text"]

        # ...

        if model_name == "analyzer":
            results = self.analyzer(model_input)
            predicted_label = postprocess(results)
            return {"label": predicted_label}
        elif model_name == "summarizer":
            results = self.summarizer(model_input)
            predicted_label = postprocess(results)
            return {"label": predicted_label}
        else:
            return JSONResponse({"error": f"unknown model: {model_name}"}, status_code=400)

TensorFlowPredictor

cortex.yaml

- name: multi-model-classifier
  kind: RealtimeAPI
  predictor:
    type: tensorflow
    path: predictor.py
    models:
      paths:
        - name: inception
          path: s3://cortex-examples/tensorflow/image-classifier/inception/
        - name: iris
          path: s3://cortex-examples/tensorflow/iris-classifier/nn/
        - name: resnet50
          path: s3://cortex-examples/tensorflow/resnet50/
      ...

predictor.py

class TensorFlowPredictor:
    def __init__(self, tensorflow_client, config):
        self.client = tensorflow_client

    def predict(self, payload, query_params):
        model_name = query_params["model"]
        model_input = preprocess(payload["url"])
        results = self.client.predict(model_input, model_name)
        predicted_label = postprocess(results)
        return {"label": predicted_label}
PreviousExampleNextCaching

Last updated 4 years ago