Example
Create APIs that can respond to prediction requests in real-time.
Implement
mkdir text-generator && cd text-generator
touch predictor.py requirements.txt text_generator.yaml# predictor.py
from transformers import pipeline
class PythonPredictor:
    def __init__(self, config):
        self.model = pipeline(task="text-generation")
    def predict(self, payload):
        return self.model(payload["text"])[0]# requirements.txt
transformers
torch# text_generator.yaml
- name: text-generator
  kind: RealtimeAPI
  predictor:
    type: python
    path: predictor.py
  compute:
    gpu: 1Deploy
cortex deploy text_generator.yamlMonitor
cortex get text-generator --watchStream logs
cortex logs text-generatorMake a request
curl http://***.elb.us-west-2.amazonaws.com/text-generator -X POST -H "Content-Type: application/json" -d '{"text": "hello world"}'Delete
cortex delete text-generatorLast updated