Configuration
PythonPredictor
PythonPredictorSpecifying models in API configuration
cortex.yaml
cortex.yamlThe directory s3://cortex-examples/sklearn/mpg-estimator/linreg/ contains 4 different versions of the model.
- name: mpg-estimator
kind: RealtimeAPI
predictor:
type: python
path: predictor.py
models:
path: s3://cortex-examples/sklearn/mpg-estimator/linreg/predictor.py
predictor.pyimport mlflow.sklearn
import numpy as np
class PythonPredictor:
def __init__(self, config, python_client):
self.client = python_client
def load_model(self, model_path):
return mlflow.sklearn.load_model(model_path)
def predict(self, payload, query_params):
model_version = query_params.get("version")
# model_input = ...
model = self.client.get_model(model_version=model_version)
result = model.predict(model_input)
return {"prediction": result, "model": {"version": model_version}}Without specifying models in API configuration
cortex.yaml
cortex.yamlpredictor.py
predictor.pyTensorFlowPredictor
TensorFlowPredictorcortex.yaml
cortex.yamlpredictor.py
predictor.pyONNXPredictor
ONNXPredictorcortex.yaml
cortex.yamlpredictor.py
predictor.pyLast updated